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ABSTRACT

A reggeon calculus for the production amplitude is derived by
using Gribov's method of analyzing hybrid Feynman diagrams., We find
that, for any reggeon diagram, the production amplitude can be written
in the representation discussed in part I of this study, and each term can
be evaluated accqrding to rules which are a rather straightforward
extension of Gribovis reggeon calculus and have the same character of
a nonrelativistic field theory. We briefly show how the concept of reggeon

field theory can be applied to production amplitudes.
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I. INTRODUCTION

In the first part of our s.tudy1 (henceforth referred to as I) we
derived anél discussed in some detail a representation of the 2-n production
amplitude in the multiregge limit. In this representation, the amplitude
is written as a sum of terms each of which corresponds to a certain set
of simultaneous singularities. Signature factors are shown explicitly, and

the remaining coefficient functions are real. For the 2—3 amplitude (Fig. 1):

ai Q/Z'a/i (1/2 QIOZ
= + °
T, 3= 8telt,)s s = & &  Vil+s Ts TE & VoM (1.1)
1721 2 12
where g(t) and VR Laiaztitzn) are real (analytic) functions for the reggeon-

two particle vertex and two-reggeon particle vertex, respectively.

This discussion had been based entirely on amplitudes with pure
Regge pole exchange. In this second part we want to extend our consideration
to amplitudes which contain Regge cuts as well, and it will turn out that
the representation (1.1) is just the right one to be used. When we write it

as a double Sommerfeld-Watson transform:

1\2 N I7i
(1 s o +
Toss ( 41) fdi'i 215 Spe & & 5 Fplydptytn
1721
i, 3,
2 "1 -2 .
s s £ & . FoG,ittn (1.2)
ab 323132R1212
with appropriate functions FL R’ then we will find that this form holds

for any 2-3 amplitude, including those with Regge cut contributions, and all
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information about the j-plane structure is contained in the coefficient
functions FL,R , which are free from phase factors.

In examining the effect of Regge cuts in the production amplitude,
we follow the pattern of Gribov‘s2 work on the 2-2 amplitude, i.e., we
shall study hybrid Feynman diagrams and use Sudakov techniques. As the
resﬁlt, we shall find that a reggeon calculus can be formulated which is a
rather straightforward extension of Gribov's rules and has the same
structure of a nonrelativistic field theory. TUsing the representation
(1.2), this reggeon calculus provides us with rules for the calculation
of Regge cut contributions to the coefficient functions FL and FR . One
particularly interesting aspect of this is that it will be possible to apply
the concept of reggeon field theor‘y3 to production processes.

In course of deriving our reggeon calculus, we first shall examine
hybrid Feynman diagrams of the 2—-3 amplitude. Then we extend our
considerations to the 2—+4 process, and from this we derive our general
rules. In order to make the reading of the paper as convenient as possible,
we shall present all our results in the final section, while calculations
will be done in Sections II, III, and an appendix. The final section will
also contain a brief derivation of the reggeon field theory which recently
has been used by Migdal et al. 4 During our calculations in Sections II,

III we frequently refer to Gribov's paper as well as to two papers of

Drummond5 and C‘ampbell6 who studied some hybrid Feynman diagrams

for the production amplitude.
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II. REGGEON DIAGRAM TECHNIQUE FOR THE 2-3 AMPLITUDE

The simplest diagram that contributes to the double Regge behavior

of the 23 process is shown in Fig. 1. The momentum transfer vectors

are related to the incoming momenta and the energies S.b’ Spe’ S
through:
s —m2 s —m2 Zq2
be bc "4
T e + + - +
q 55— (Py7P,) 5>— (Py7P,) ta,
2(s-4m )
s -m2 s -mZ—Zq2
ab ab
E e —— - 4
2(s-4m )

with QY| and 9, have only components perpendicular to the incoming

momenta Py and P, - In the double Regge limit:

5 Sab’ Bpe 7
S .S
ab bc ]
= —_— 2.
ti’tz’ n 5 fixed (2. 2)
it follows from (2. 1) that
2 2
—_— —_ 2.3
Ay Y Gt (2.3)
S .S
ab be 2 2
nd —— = - - = . .4
a — m, - (q,-q,), =7 (2.4)

Assuming for the moment that the two blobs in Fig. 1 have Regge pole
behavior with factorizing residue functions, we have for the asymptotic

behavior of Fig. 1 the expression (1.1) which we now write as:
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o, o1 - -
s Zn vt e +n v o . (2.5)

S
absbc Lo, oo Razafa/

T = gt )g(t,)
’ tee 17271 172
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(2.5) can also be represented as a double Mellin transform:
2 I ] ]
1 1 72 1 .
(.4 C s )
Tous ( 41) Edh 12%ab%pc | ™ §j1gj2j1FL(J1JZt1t2m

-]
2 ..
+
n gjzgjiszR(JiJztitzﬂ) (2. 6)

where

2
. (2 .
Fr rU 3,7 = (n) g(ti)g(tZ)Gji(ti)VL,R(Ji‘]zt1t2n)Gj2(t2) (2.7)

1
jral(t)

Gj(t) = (2.8)

Obviously, (2.6) is the same as (1.2). For simplicity in our following
calculations we shall use (2. 6) rather than (1.2), and one of our results
will be that this form is unaffected by the presence of any cuts. All

effects of cut contributions will be contained in FL and FR .

As the next step we consider the diagram in Fig. 2. A detailed

7
analysis has been given in Ref. 5 and we quote only the result :

2
de d -
iTrZ dkL d£1£2£3 S£1S£zsi31G <( k)Z)G ((q k)Z)G (kz)
- 3 q - -
4 (217)2 (2) ab "bc 11 1 7 12 2 13 1
4y -4,
‘€ N N n £ & V. +n T& & v
13 z1£3 z2£3 111211 L £2£1£2 R| . (2.9)

The N's stand for the Mandelstam crosses at both sides of Fig. 2 and
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and describe the coupling of two reggeons to two particles. They are
identical to the functions which appear in the 2-2 amplitude (Fig. 3). The
energy factors in (2. 9) can be rewritten as
+¢ -1 £ 44 -1 -(2_-
£1£312£3 (£31)

Sab sbC n . (2.10)

We further combine the signature factor &2 with those in the bracket.
3
Using the identity

i +4 -
117(11 £3 1)
€ +r,T
& & ° 0wl L -11) Yy
173 sin w(f, +L, 1°3
T, tT
™ 1 3
—_ +f A —-—
N _Cosz(ﬂi 3+t P )
L2, £, ¢
13 £,0e,
sin%l if T=+
L ,- (2.11)

cos%l if 7= -

which is derived in Gribov's original work we obtain for the energy factors

and gz times the brackets in (2. 9):

3
+4 - +4 _- -4 +1_- (4 _+1 -
’, 31;2131{”(“ ‘, 1)§ : . +n(12 t, 1)g
S +4 - y +{ -
ab be Ji 17,0, "L VL0, 1+ -1
S 1 VRiv, 1]. (2.12)
172 273

When we insert this into (2. 9) and write it as a double Mellin transform

like (2. 6), then j1 becomes equal to 11+£3—1 and j2 =4 +£3—1 . Since

2

éz g depends only on the difference lz—l
2 1

for the Mellin transform:

1 which is now 32-31 , we obtain
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2 Iy 3y 7 -]
1) j' .1 T2 1 2
-— dj, dj_ s | s n &€& . F +n "§ & . F
( 4i 1772 ab “be APRAPR PR il R (2.13)
2
d"k de de de,
with  Fy g = 5 =3 6 (L, -1-],)8(L,H =1-],)
(27) (2mi)

2 .
Ny o Ny g Gzi((qfk)i) Gzz((qz'k)i>G£ kVe, rY

and vy 2 =Yy for FL and = Yy 4 for FR . The reader realizes
1\ 2 1 3 23
£ 3
2 .
that (2.13) is indeed identical to (2. 6) and only FL and FR have changed.

Comparing (2.14) with the reggeon diagram (Fig. 2 or Fig. 4) one further
recognizes the field theoretical structure which is very similar to the
2—2 case: for each reggeon line a propagator G , conservation of the

two-dimensional momentum at each of the three vertices Nz 113, NZ 213 )
and V. Further we have a loop integration J.dzkldl . What is new,
however, is the role of angular momentum. To the left-hand side of the
produced particle, the sum of (angular momentum -1) is j1—1 and on the
right-hand side jz—i which are the exponents of Sab and Sbc’ respectively,

In the language of field theory, the reggeon ''energy" ji-i enters the

diagram from the left-hand side, and the energy jz-i is leaving at the
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right-hand side. At the vertex of the produced particle we have a loss
of energy (j,=1) - (j, 1) = j,j, -

At this point we want to say a few words about the yv-factors appearing
in (2.14). In the analysis of the Mandelstam graph (Fig. 3),Gribov pointed
out that Y'qi’z , produces a zero when j = zi + 12-1 is a physical angular
momentum. Consequently, the two-reggeon cut contained in Fig. 3 does not
contribute to physical partial wave in the t-channél. In our case (2.14), the
yY's play exactly the same role: FL , being the coefficient of §j1, must vanish
at physical values of j1 , because our diagram contains a two-reggeon cut in
j1 and does not contribute to physical partial wave. This vanishing is ensured
by Yy g - For FR’ the decoupling is provided by \TY

13 2 3

So far we have assumed that the blobs in Figs. 1 and 2 are simple
Regge poles (therefore diagram Fig. 4). But from the way in which the
asymptotic behavior of such hybrid Feynman diagrams is derived it is
clear that the blobs can also be more complicated subamplitudes which
contain cuts, e.g., Fig. 5a. If the blobs in Fig. 5 are poles, we obtain

the reggeon diagram Fig. 5b. The asymptotic behavior of this diagram

is again (2.13), but in (2.14) N and N have to be replaced by
1113 1223

two-particle-three-reggeon coupling functions and the reggeon propagators

G and G by more complicated Green's functions (Fig. 5c), €. g.

L, L,
2 dild‘lll
d“Kk* 151
N G, - N y §(L°+L 7 -0 -1)
£ 1 rd , P rld
Lyt j(Zﬂ)zj(Zni)z RIS L 111
G, . (k7 2)G ((q k k‘)z) G (2. 15)
/R A IO A Vit o Tpogoee. .
1 1 VL/ag e, Ly
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The rules for the calculation of those "'self energy' corrections are the
same as in the analysis of 2-2 scattering,

Next we analyze diagrams of the form Fig. 6 where the left-hand
side may be any 2—2 amplitude which can be calculated by use of the
familiar rules, and the right-hand side any 2-+3 amplitude which we have
considered so far. For illustration, we take the simple diagram of Fig. 7
with Regge poles for the blobs, but our considerations will also be valid

for more complicated amplitudes. In Fig. 7, the subamplitudes have the

representations:
1 21" g(t1)2
Flhsz -E[dll gz [(pi-k) :\ E—'m (2.16)
5 o .
F oo - (—4%) gdj1dj2 (k-qz)z J1s;lozc ‘:n 31%1%2], F
+ n-jzg. £ F } 2.17)
3,344, R
with FL-, R taken from (2.14). The study of the link between the two

amplitudes follows the pattern of Gribov's analysis in the 22 case: one

4

uses Sudakov variables: k = ap 5 + [3p1 + kJ.(Cf' (A.1) ), and from the

requirement that the external masses of F and Fr are to be finite

£ hs hs

when all energies are large we obtain:

{
) = lel g 2=, k] sm®  (2.18)

2 2"
-k = - - ~
(CL1 ) Sy %t seB + (q1 k)_l. m .

=
1

saff + kzlw m2

/
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2 2
(pi-k) ~ s > m

2
(b, ~ ps > m

2
- !a’»-{n—, “3[ >>———rn (2.19)
S S
ab
2 2
- >>
(k-q))" ~ Bs_ > m
Thus the «, B integrations are restricted to
mz mz m
T«“"'S—_s D < |pl gt . (2. 20)
bc ab
> 2
But when B ~ 1, (2.18) requires sef~ m and a~ mT , Whereas (2.19)
2 o m2 . . m?2 2,
demands as > m . Similarly, o ~ P implies § ~ and (k—qz) is
be ab
no longer large. Therefore, (2.20) is replaced by
2 2 2
2o« e 32—, 2« || <1 (2.21)
S s S
be ab

. 2 .
and, as a consequence of this, we are allowed to approximate (qi—k) in
(2.18):

2

. 2.22
| (2. 22)
So the link becomes:

(a,-k)% ~ sap + (, k)

jd4k F 1t
£h 2 2
S 1% m (qi-k)z-mz rhs

> i
1 . £ 1
= (- 4—1) Jdﬁ d‘]i s J-doz dB(-as) §£ (ﬁsab)

12 > ! > . (2.23)
Sar(3+kl—m safﬁ+(k—q1)l—m

where we have written down only those terms which show the dependence
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ona and B . For the a¢-integration there are poles from the two

propagators (and the external masses of Fr ), lying exclusively

F
hs’ ™~ £ hs

on one side of the real «¢-axis, as well as from the energy cut of Fl he’

one in the upper and one in the lower half plane. Since one half plane
is always free from the propagator poles (for p > 0 it is the upper, for
B < O the lower half plane), we can close the a-integration contour
around the energy cut in this half plane and obtain the integral of the
energy discontinuity. Furthermore, that the two contributions due to

B > 0 and B < 0 just cancel each other if Fﬂ is opposite to the s

hs ab

signature in Fr s but add if they are equal. Thus (2.23) becomes

h

m? 1
1 2 . m /Sbc S g ji
2 (— -47) dp d31 s ) da 5 dp(-as) (Bsab)

-m /s m /Sab
-szkl 12 5 ! - — (2. 24)
saﬁ+kl -m soz[3+(k-q1)_L -m

where the signature factor gl has disappeared, because we have taken

the energy discontinuity of F Since all terms in (2. 24) to the right

Lhs '

of the energy factors depend only on sef but not ¢ or ( separately,

we introduce x = -saef as a new variable and do the p-integration:

j -4~
dg B ! dexﬂ

(2. 25)

2
T o . £ Iy 1
s g daS 2 dp(-as) (Bs_) = sabg

2
-m~/s
m /Sab m /Sab
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The most singular part will come from jim £, where (2.25) becomes:
J1 s
2
_ab_ab dex . (2. 26)
i, -1
1
Finally, we take the Mellin transform in s of the whole expression and

ab

do the £ and ji integrations:

1 2 . s J jZ L dzkl j
(-— H) dedJZSabsbc n %E.j 'g(ti)Gj(ti) 2 5 dxx

2’ (2m)
g(t,) -]
1 1 2
. F_+n "& &. g(t,)G.(t))
2
-x+k2 -m —x+(k-q)2-m2 L J2 J:‘2 ot
1 1
2
d
k| i 8ty 1
2 > dx x > 5 FR . (2.27)
(21) -xtk "-m -x+(k-q), ~-m
1 1
It differs from (2.13) in that FL(FR) there are replaced by
FL, R~ g(t1)Gj(t1)erL, R

(where rj stands for the curved brackets in (2,27). This corresponds to Fig. 7c,

and the rules for this r;eplacement are thé same és in the 277—>2 casre.
Clearly, (2.27) is again of the form (2. 6) with modified FL, R.

Let us stop here for a moment and see what we learn from these
considerations. What we have demonstrated is that internal reggeon-

reggeon-reggeon vertices in the 2-3 amplitude obey the same rules as

in the 2-2 case. In particular, this means that momentum and reggeon
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energy (= angular momentum ~ 1) are conserved. Combining this with
what we have said after (2, 14), we obtain the rules for a reggeon field
theory which is, apart from the new vertex V and the fact that we have now
two different reggeon energies j1 -1, jz - 1,the same ag inthe2-+2
Cases
Before we are justified to state this 8s our result for the 23
amplitude it i3 necessary to consider a somewhat larger class of reggeon
diagrams, To this end we look at the hyper Feynman diagrams of Fig. 8
and the corresponding reggeon diagrams in Fig. 9. Their analysis is
rather lengthy and described in the appendix, Again the amplitudes are
of the form (2. 6), and Fi g ore calculated with our field theoretic
rules stated above. Thusour result is completely confirmed, and we
summarize 6y.|r rules as follows;
{3) write the 2-+3 amplitude in the form (2.6), For the computation of
FL.R“ ’j'zg"tzﬁ uge the rules:
{b) eich reggeon line has the same direction (say to the right) and carries
gnergy'l -‘_i‘ angd momentum S 1 It corresponds to the propagator C't -(ki)*
1/{¢t -a(ki)';_. u@d the £ -lntegration, whose contour runs to the right of the
: pmpaga.taf pole, is to be closed to the left around the pole,
(c) Any internal n-veggeon -» m-reggeon vertex (Fig. 10a) is denoted by

r oL and {s accompanied by congetrvation of energy and

!i"‘ o 1 m

m n
momentums zzi.‘ E‘:l{ﬂﬂdzl{li-ﬂ' };(t?—i) .
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(d) For the twa particle -n-reggeon vertex (Fig. 10b) a factor N!

01’
i n

and conservation of energy and momentum: at the left vertex

-~

- . . - - . - .
q,* "ki' ]1-1 = (1 i-i). and at the right one q?=.:,ki. 32-1 = M(li 1) .

{e} A factor VL(! 1! z;kz kz .M or VR(I i" ;kz kz ,n) as well as a

11721 241 2l
conservation k‘l-kzstq1 —qz) , ti-lzsui-,}z) for the one-particle
two reggeon vertex (Fig, 10c);
! dzkdl
{) for each closed loop an integration T - Any diagram is then
(27) "1

of the form Fig. 11: ji'i’ 31 are total energy and momentum on the

left side, jz-i.?{z those on the right side of the produced particle, and
51'32' 31 -EZ is leaving along the produced particle,

(g) Finally, each vertex with more than dne outgoing reggeon is accompanied

by a factor Y, ' which in analogy to {2.11) is defined by
M

n-1
g v g = (i) Y g - - L] (Zo 28)
!1 ln li..tn!ii-..!n(n 1)
Ve 411
In addition to that, there is a factor 1t = for the 1-loop in F, and
' Yej, +1-t L
I
Yai -
et
5 - in b i
e
t“ L

This last rule needs a comment. By combining y-factors in the

diagram in an appropriate way and by using identities like

Y Y =y 4V ¢ {2.29)
:1124131 1213 tz‘t”}’ !1 3

ane can atways cancel the HY'} + So there is no pole due to a zero

i-f °
1

of integer ji . The numerators y” +1-1 and y”. ot however, arc
1
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necessary if the diagram is to decouple from the physical angular

momentum states of j1 » respectively. On the other hand, in practical

s ']2
calculations the vertices are approximated by constants and the yis by
its value at £ (T 1. Then the ratio in (g) reduces to 1 and we have just a

N-1 =i for each vertex and N of the diagram, but not

r
'1 .é 2
l i.’ 2, 3 z 1 2

for the vertex of the produced particle,

The next step in enlarging the class of considered diagrams includes
those of Figs. 12,13, They contain a new vertex which has not been
studied as yet: the particle-three-reggeon vertex. A detailed analysis.of
this vertex within the framework of Gribovis Sudakov technique,together
with a brief study of diagrams that contain this vertex,will be given
elsewhere. 8 Here we only mention that there are two different types.

An example of the first type is given in Fig. 14a. The resulting amplitude
has again the form (2. 6), i.e., two terms each of which corresponds to a
set of simultaneous discontinuities (Fig. 4 of Ref. I). The other type
(Fig. 14b), however, contributes only to one of these sets. In other
words, Fig. 14b has no simultaneous singularities in s and s and

ab
leads to the amplitude

1)2 . ji jZ -ji . 30
Tz_>3’(‘ﬁ 4y d55,p Spe ™ gjfj Fp U358t (2.30)

234
2 (de AL
) d“k 12
F; = g(ti)Gji(ti)J( j

L -4
5 S o1

2w) (2mi)

2 2
«WLGI1 (q,-k), G, (k)N 112 (2.31)
2
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where WL stands for the Mandelstam cross at the produced particle.
Note that there is no contribution to FR from this diagram. The fact
that there exist these two types of a particle-three-reggeon vertex is' in
agreement with what is expected from the partial wave analysis in the
crossed channel, 7 Apart from this the particle-three reggeon vertex
fits into our reggeon diagram technique: amplitudes containing such a
vertex are still of the form (2. 6), and in the reggeon field theory we have
a new vertex where momentum is conserved and the produced particle
carries away the reggeon energy ji—j2 which is the difference of the
reggeon energy on the left-hand side and the total reggeon energy on the
right-hand side of the produced particle (Fig. 15). For particle-four-reggeon
and higher vertices we expect a generalization of these features: there
will be several types of vertex functions and some of them will contribute

only to one set of simultaneous singularities. However, we strongly expect

that they will fit into our rules.
III. THE 2-4 AMPLITUDE

In this section we shall consider some diagrams for the 24 amplitude.
From the results it will then be clear how to generalize the reggeon diagram
technique to the general 2—»n case. First we say a few words about the

variables (Fig., 16). The momentum transfer vectors are:



-17- FERMILAB-Pub-74/95-THY

2 2

s -m s -m -2q
bed bed
= + + - +
a s (pi pz) : > (p1 pz) QY
2(s-4m )
2 2
- + - -
_%cd ®ap o+ )+Scdsab em -2q (b -p.) +
9 2s PP, Z PPy T4
2(s-4m )
mz—s S -mz—Zq2
abc abc 3
T — + + - +
9, o (p1 pz) 5 (p1 p,) A3,
2(s-4m )
The multiregge limit for this process is defined as:
5 Sabe’ ®ped’ fab’ Sbe’ Sca T
abc “bed ®ab "be  “be  Sed .
S S Sabc Sabc: Sbcd Sbcd
t = 2 t, = 2 t, = 2 fixed
1979, 1374y 1x€
For each produced particle we have a rn-variable:
_ Sabsbc _ Sbcscd
b s » M. = 5
abc bed
which in the multiregge 1limit become
_ 2 —q)2 - m? - (q -q) 2
My = m - (q=ay), » n 97957,
There we have also the identities:
sabcsbcd - Sabcscd _ Sabsbcd _
s be’ S Mg s S le
2 2 2
b7y 0 79 t5 7 ds

21

(3.1)

(3.2)

(3. 3)

(3.4)

(3.5)

(3.6)
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As the simplest diagram for this process we consider Fig. 16a
which reduces to Fig.16b when the blobs are Regge poles. Its asymptotic

behavior is (3. 4) of I with VL’ VR being the same functions as in the

2—3 amplitude of Fig. 1 (2.5). For our following discussions we prefer
to use a slightly different form. Using the n variables (3.5) and (3.7), we

express all energies in terms of sa S , and n, - Then (3. 4)

b’ “pe’ Sca’ M

of I becomes:

ai QZ Q3 - —0.’2
T oa ® SapSpcScq8lty)8(ty) §a1§ ; Ty e V!

oo, o, a

)YV_(n)
2%4 ¥3%, Loe

L'y

% 7%
tE € a ga a nb TIC v (nb)VL(nC)

@, @, asa, R

"% T3

+ §a3§aza3§a1a2nb . VR(nb)VR(nC)
¥ T

+(§a goz o ga a * ga: ga o ga/ o )nb nc VL(nb)VR(nc) )

1 %3%1 %2%; 3 ¥1%3 %%
(378)

It can also be written as a triple Mellin transform:

( 1)3 & i d Iy 3, B e e ¢ iy Iy

- = idi,di.8 . s s £ & . E .m n “F._ +...

3) V%2 Y3%p%c e iy, dgi, e TLL (3.9)
3

£t ot 7 >=(;)g(t1)Gj (6 V] ()G, (V) ()G, (E)e(t))  (3.10)

Foo(,i,]
17273
LL 123123 b e N ) 3

and a similar representation for the other four terms in (3. 8) with functions
FRL’ FRR’ FLR analogous to (3.10). We shall now demonstrate that this

form remains valid when cuts are included and that the rules for the cut

contributions to the F's are a direct generalization of the 2—3 case.
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To this end we first consider the diagram of Fig. 17. Its

10
asymptotic behavior has been analyzed in Ref. 6 and we use the result™ :

2
rag,..ds d "k
T 1 4 L 2 2 2
i(—)} Ny 4 Ny Gy 66, (407, (07
2 (2.-rri)4 (2_"_)2 !141314 4.1. 111 112 2 L
- G ((q -k)z)sjZ 15128153814-1& & & €
23 3 1) ab "bcTcd 14 £1£2£1£312
g
N T ATRL AR (3.11)

where we did not write down the other four terms of (3. 8).

We reexpress s through Sab’sbc’ Scd’ nb, nc (3.5), (3.7) :

S .S, s
g = ab bc cd (3.12)
nbnc

and write the energy factors in (3.11):

+4 - 2 -1 £ 4+ -4 (4 -1) -(L -
R B B T (R S IR ()

Sab She Sed M, e

(3.13)
Next we combine the signature factor E’Z with gz , using (2.11):
4 1

£, & =1y 3
L -
11£4 211411141

For the other four terms, we put together él with £ ,E.z , £ , and
4 2 3 2 1
gl ,» respectively. In this way, we obtain for energy factors, signature
3
and the first term in brackets in (3.11):

L +4 -1 4 +0 -4 4 _+1 - (L 40 1) - -
RPN 1 4 44 -1 : (lil 1) -(L_+2 -1)
b be Se ) 41 - € n n

iy V.V, . (3.14)
121!24 L L
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Finally, we write (3. 11) as a triple Mellin transformation:

. (__4_)3 o gt 2 03] PR S S
24 41) | N1M2%93% 35 Seq [%1 3,0, j3j2”b e fLp™ -

(3.15)

with >
de,..de, (d% 5

Fro” J 4 7 (B0 (L == )6(L pHE , ~1=])) 8L J L, -1-],)

(27i) (2m)
6, ((,0%)c (@07)e, (1ay-07)e, o, , N, , v
L L Ry 1
e\ o, (%2 0\ ‘, e0 e Ve
Vi)V (3.16)

Quite analogous expressions hold for the other four terms in (3.15). Again
note the factors Y, 112 . which decouples our diagram from the physical
partial wave in the ji-channelo

This consideration already indicates how to generalize the rules
from the 2—3 amplitude to the 2-4 case. We now have three angular
momenta ji’ jz, and j3, and ji—i, jz—i, j3-1 are just the sums of the energies
of the reggeons cut by cutting the diagram in Fig. 17 vertically to the
left of particle b , between b and ¢ , and to the right of particle c,
respectively. Equivalently, the reggeon energy ji-i enters the
diagram from the left hand side, j3-1 leaves on the right end, and
particles b and c carry away ji-jz, jz-j3, respectively, With this
prescription, we again have our familiar reggeon field theory.

We want to demonstrate the validity of these rules still in a few

other reggeon diagrams. Taking that of Fig. 18 we again quote the
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result of Ref. 6 where the diagram has been analyzed“:

2

3r,de .. de d'k

T 1 4 1 2 2

i(—)j J N N G, (k)G ((q -q °k))
4 2

2 (2m) (2m) 1113 2214 fi 1 lz 3 %2 1

£ £ ) g
2 2 3 4 1 2
G ((q1+k)l)G£4((q2+k) J-)Sab Sped Sabe Scd

-1 -2 -4

1 2 3
“in v, (n)E & +n Vo )E & n,. V. (n)E &
{ L L, L, c Rc£2£1£2][b L7 % L,

W,
4
T, Vg 4513 4]' (3.17)

The energy factors are transformed into:

L+ - +4 - + -1 -(L -1) -(£ -
R R B R LIRS (2, -1)

173
Sab ®pe Scd e i (3.18)
and for the phase factors we combine:
& & & € = iy 3 3 £
£ +4 - £ f
£1£3£211£43 £1£3£1 3112 1143
& & ¢ 3 = iy £ € g
L +2 - i

211422 112314 111411 £41121£314

(3.19)

g, & & 3 = iy g 3 3
+ - 1
R N 12141212411121314

For the combination of the remaining pair we need another identity:

T, +1 T -T.\ .
sE( 1 3) o 1772
- ﬂg : E =ic.o > £1+£3+1 — smE JZ-J3+1-—~2_“~ £ e £
Lttt 0t %24[3 I 3337050y
T,*TT T -7
cos =t _+¢ +1--2 4 sinij -j, 1 ¢ 3
. 274 2V27 2
+i £ & . ¢
£, ¢ J27d53,73,3
1,71, 39291 3493
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which can be checked by simple algebra. Here we have set j2 =4 2+/Z 3-1,

j2= L 1+1 4-1, j2 =1 2+£ 4-1 . Finally we take the Mellin transform of

2 i 3, i, -i
1 1 2 33} T T
Tos © (' H) Jd31d32d33 ab bc cd[nb Ne FLL%ingjigj3j2

T2 T2 £ .t 2,3 LE Lt
+ F & .8 . *tn 1 F
T e RL%231323332 b e TRRY;T,1570,0,
-3, -]
sn o BFLR(E"’ 50t 55,50 (3. 21)
R R PN E W PR P Y]

which is again of the form (3. 8). In the relation (3. 20) one recognizes on

T, tT

1 3 /

the right-hand side the factors cos 1(2 + +1- )and cos Eﬂﬂ +4 41
I 2\ 1 3 2 2\ 2 4

1

4) : they guarantee (cf. (2. 11)) the decoupling of our diagram from

the partial wave amplitude at integers j 1 and j 3 respectively.

Our last example is the diagram in Fig. 19. For the subamplitudes

on the right and the left hand side we use (2.13):

. 2 ~ LT 7]
1 2y 2 : ; 1
= - — - 3 F '
FI hs ( 41) deidl S |(q1 k) J L%igﬁ 24y I_Sv‘o)no
-£
+n_ °F rM & &
b R PR
Y -
1 J !
F =(--)JAd£d [( k)] 3 1[ 3
Cd 3 J3£ 3 L 'c
e e o3
+ £ .n T F_o(n) 3,22
3, 1333 c "Rc (3.22)
The link between F£ hs and Frhs is analyzed in the same way as we did

in the previous section for Fig, 7:
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2 2 2 2
<<Ioz[<<m—, o <<[5[<<—r£-1— (3.23)

Sped Scd  ®abe Sab

. 2 2
_ -1 2 3
T2—>4 = > Jdlzdla S [da(—arsbcd) Jdﬁ(ﬁsabc)
2(2m)

2 - »
d

2
(2m) Saﬂ“{i —m2 sap+(k-q2)i_m2 2 "3 ab cd

Iy s
[%1%,2 e M e FLOpFL M)
s
'+§£2§j112§£3§j3£3nb N, Fr)F M)
—EZ -j

+§£§£€§£ s nc?’F

: : (n,)F _(n )
23142337 313 R7bRe
e e nly
+ & . & . N n.  F (M )F_,(n) (3. 24)
3112313313J3b c "L'b R'ec
As to the o and B-integration, we close the contour of one of them around the
£ £
2 .
and (ﬁsabc) , and obtain an

integral of the discontinuity across the cut. To illustrate this for the

energy cuts which are due to (-asbcd)

first term in (3. 24), we write the n's, energy, and signature factor as:

j £,] T R
(-sa) H(-as, ) Z e g e s e &, (3.25)

it 3933
, (Fig. 20). The

and see that P appears only in the total energy of Frh

discontinuity across its cut is just

4 j. -2 z j
3 3 3 3 °3
discﬁS (Bs) (Scd) 3§2 €. ' =-(Bs) s . & . (3. 26)
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and by the same arguments as in the previous section we arrive at

2 2
- +
™ o L ®ab s iy 33
2 |db,dl s , dal-asy o) , dPBBs,e)  |d%35,p5q
-m /Sbcd -m /Sabc
2
d“k | i, A
1 1 1 1 3
£ &, L& n, n_  F_Mm)F (n).
2 2 2
J 1231 ‘]323 (2m) saﬁ+ki-m2 Sar[3+(k—q2)l-m b ¢ LobLoe
(3.27)
Changin nd B to a® =n T e =nts B leadst
anging a a B o M. S.q% B° = n Sab o]
2 2
-m"~/n m /n
¢ s b ’
2 3
d f 4 4 rd
Zjdlz 113 81 do’(-«a Sbc) dg “(p Sbc)
-mZ/s mZ/s
bc bc
2
d kJ_ 1 1
. 5 53 AR (3.28)
g I+ - rd l+ -
(2m® s, @’B +kim” 5 a7l Hk-q )
and introducing X = -sbcoz’ﬁ’ and doing the B° integration gives
L _-1
2 3 2
-4
513 %1— _sz z(mz)’Z 372
{
(3.28) = 2 {d¢ e, RSB be dxx ... (3.29)
2 3 2 3—£ 5

Finally, we take the Mellin transform with respect to She and do the

4 3’ £ 5 integrations by closing their contours to the rh side. The pole
Ls-1 f374

- 2 3772
1/t 3 ! 2) makes (m /le) and m in (3.29) vanish, and

we end up with:
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3 i, 3, ] -3, -
1 L g g 1 2 3 1 2
L d
( 41) Jdlisz 13540 %be Scq & gjzji%?’jznb e

I

2 |
(4%, w2 gy .
2 L' A 22z F )

2 -x+k - - - -
(2m) X k_L m x+(k qZ).L m

(3. 30)

A similar argument holds for the second and third terms in (3. 24), but

for the fourth we have
j £, j ip-t
1 2 “1 3 3 3
(-sa) “(-asy g) T UL £ (BS) T(Bs, )7 g &

, (3. 31)
1 72 3937 3

Now @ appears in both the total energy of Fr and the subenergy, and

hs
when we move the p-contour around, we pick up the discontinuity across

both energy cuts (Fig. 21):

+i i _ s .
Frhs(ﬁs i€, Bsabc ie) Frhs(ﬁs le’ﬁsabc i€)

. tie) + di
disc sFrhs(ﬁs’ Bsabc ie) + disc

B Bs Frhs(ﬁs—ie’ﬁsabc)

1 5 . J3 33-1 3 Sk
(— Z) d[33dJ3(BS) CEIN [ .3£ , + gz 3]FR(T)C) . (3.32)

With this we reach the form (3.27) and, by repeating the steps, finally

at the analogue of (3.30). For the combination of our signature factors

we use the identity:

O +ENE E L =& E E . +EE E ., 3,33
(%332 %2)%1%231 631'3331%233 1%3%233&3231 -3
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and have:
3 i, 3, 3 -j =
1)J C . 91 92 33 Jg I3
-—=) (dj,djdi,s 's s (5§ & . & . +EE .E In n
y . . . .
L 17273 abbe "ed 7, ,aly Uy0y U30,d570500 b e
2
d“k J j
1 2 1 1
’ dxx F_(n) F_(n)
2 2 2
J(Zn) Lob —X+kl -m —x+(k-q2)_2L-m2 R'e

(3. 34)
This concludes our demonstration of the validity of our rules in more

complicated diagrams.
IV. SUMMARY AND DISCUSSION

In the previous sections we examined hybrid Feynman diagrams
which contain Regge cut contributions to the 2-3 and 2-4 production
amplitude. In performing this analysis, we followed the pattern of
Gribov?s work on the 2—-2 amplitude, and the result of our study is that
Gribov's reggeon calculus can be extended to the production amplitude.
We found mainly three new features which are not present in the 2-2
case. The one is the decompgosition of the amplitude into a sum of
termsg, each of which reflects a certain singularity structure. In partI
we derived and discussed this representation for amplitudes which contain
only Regge poles, but the calculations of the last two sections demonstrate
that it remains valid when Regge cuts are included. If we take,for
instance,the 2—3 process, than for any given reggeon diagram the
amplitude can be written in the form (1. 2), and our rules then tell us

how to compute Fj and Fp .
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The second new phenomenon is the existence of more than one
momentum variable and angular momentum which in the reggeon calculus
plays the role of energy. In terms of reggeon field theory, the 2—2
amplitude is a 2-point function and depends only on one momentum and
energy variabl’e° In contrast to this, the functions FL, R of the 2-3
amplitude are 3-point functions and depend on two reggeon energies and
momenta.

Finally, the diagrams for the 2-»n production process contain a
new vertex which couple the produced particle to reggeons. In the
simplest case, it is a two-reggeon particle coupling, the analytic
properties of which have been discussed by several authors, but, in
general, the produced particle can also couple to three or more reggeons.,
In this paper, we have been concerned only with the two-reggeon particle
coupling, but our rules will include the more general coupling function.

A discussion of diagrams with a three-reggeon particle vertex which

will be given elsevvhere8 shows that this higher order coupling indeed fits into
our rules,and leads to the belief that the same is true for the general

many reggeon particle coupling.

All these results have been derived from a study of 2-3 and 24
reggeon diagrams. We expect, however, that our rules apply to the
2-n amplitude. In fact, we have considered at least some types of

2-n reggeon graphs and found that our rules are correct. We do not

want to present these calculations here, but consider them as a
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justification for the expectation that our rules are of general validity.
After these remarks we want to list our rules. They are a direct

extension of the rules for the 2-3 amplitude given at the end of Sec. III, and

summarize the results of both previous sections. For the calculation

of any reggeon diagram that contributes to the 2»n production amplitude

one proceeds in the following way:

(a) write the 2-»n amplitude in the representation which we have described

in I and write each term as a multiple Sommerfeld Watson transform.

For illustration, a typical term of the 2-5 amplitude is (cf. (3.16) of I):

( i)4 dei .. dj4sj3sj1-j3sj4—j3sj2-j1

+F (ti'”t

RRL a2 dg 3y My M g

& iy 3, i3 P P

-1)‘(. . "1 "2 3 ‘4 273 73

= (— dj,..dj, s s s s E & & & .n_ n_ Tn
4i 1 4 "ab bc cd de 337933 P PR PR b ¢ d

RRL ) . (4.1)

Mo Mer Mg
The n-2 subscripts of F correspond to the set of VR,L functions to
which it would reduce for pure pole exchange (cf. (3.16) of I), and
reflect the singularity structure of this term.

For the calculation of the F-functions use the reggeon diagram

technique:
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(b) each reggeon line has the same direction, say to the right of the

diagram, and carries energy £ -1 and momentum l_il.,

It corresponds to
the propagator G 2 1/( —oz(k ) , and the [ -integration, whose
contour lies to the right of the propagator pole, is to be closed to the left
around the pole,

(c) Any internal n-reggeon - m-reggeon vertex (Fig. 10a) has a factor

r and is associated with conservation of momentum and

L, ..L ;0. 07
m

1 n 1
SR =2k, D)= Bgee
energy- 21: i_ 1 i.’ 1 (1-' ) - 1(i )

(d) For the two-particle - n-reggeon vertex (Fig. 10b) write a factor

Nl y and use conservation: at the left end of the diagram c_1)1=2 Ei ,

1 n

j,~1=Z(£.-1) , at the right end q

4 n-1” TEp g t1REUE -1

2 2 2 2
(£ 11 Z’ki_l_’kZ_L’n) or VR(!Z £ sk, ,k l,n) for each

(e) There is a factor V 1 1258 s
one-particle - two reggeon vertex (Fig., 10c). As indicated, this factor in

L
general depends on momentum and angular momentum of the two attached
reggeons, as well as the n that belongs to the produced particle. The
subscript agrees with the correspondong subscript of F: for the left-most
produced particle with the first subscript of F etc. In the notation of
Fig. 22, the i-th produced particle has momentum 99 and carries

reggeon energy ji-j. Correspondingly, there is a conservation law:

i+1°
k1 k2=(q q1+1) 1l 1—£ 2=(Ji-31+1) for this vertex. For a partlcle—threg
reggeon vertex, (Fig. 15), there is another function WL R together with
— _-—» _—» - - = + _ _ _
ky-ky-ky=(q,-q, ), (8, ~1)-(2 +L ,-1) = (], Jipq) -
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2
d kldl

3
(2w)°i
Any diagram is then of the form Fig.ﬁ 22: to the left of the left-most

(f) For each closed loop there is an integration S

produced particle total energy an
this and the next-right particle jz-i, az and so forth. Figure 22 is
easily recognized as a n-point function, with the external legs being
the n-2 produced particles and the right and left end of the diagram.
Because of energy and momentum conservation the amplitude depends
only on n-1 energies and momenta.

(g) Finally, there are still y-factors in the diagram, coming from the
combination of signature factors of the internal lines. Since the order
in which these signature factors can be combined is not unique, there
are different ways how to arrange the vy-factors. We want to mention

one of them. In this case, each vertex Nl 2 and Ty -4 2 .2
1 n 1 m 1 'n

with n reggeons on its right hand side is accompanied by a factor

Y, s (defined in (2. 28)). In addition to that, each £ -integration
FEEEE

Vg j+1-t
(see Fig, 22) has a factor 1 = ———— , if the corresponding vertex
Yo +1-2
! Yy ALY
function has the label L, and a factor — When the label is
Yy j+1-4

R. The numerators of these factors produce a zero for physical values
of ji and ji+1 and thus ensure that diagramslwith cuts decouple from

physical angular momentum states. The denominators can always be
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cancelled against other vy-factors of the diagram, and their zeroes do
not produce any poles. Therefore, the diagram has the correct
decoupling properties at physical values of angular momentum.

But the reason why we have chosen this way of arranging the vy-factors
is the following. In practical calculations where one is mainly interested
in the region ji ~ 1 and ti ~ 0, the vertices of the diagram are
approximated by its value at zero reggeon momentum and energy, and
the y's by its value at £ i 7 1 . In the most interesting case, the so

called ""enhanced" diagrams, one has only triple couplings T4 g

1’72 3

between reggeons, and the value of e, at £ P T 1 is -1. Since
2 3

there are twice as many vertices r as vy in the

L. 1

Lyttt 2% 3

diagram, one has just a N-1 =1 for each (real) Ty g g - The
1’7273

Y, . Y, .
+14 = +1 -
L1j. +1-4 £y, t1-4

y-factors -  and ——— , on the other hand, reduce to
Yﬂji+1—£ iji+1—£

1, and thus the effect of all y-factors together is to make the triple
reggeon coupling purely imaginary.

We would like to conclude with a few words about the practical
use of our reggeon . calculus in production processes. As we have
mentioned in our introduction of I, the treatment of the pomeron as a simple
pole leads to serious theoretical inconsistencies, and it is, therefore,
unavoidable to include renormalization effects. In the argument which
leads to the unpleasant pomeron decoupling theorems, the production

amplitude plays a crucial role. This motivates a particular interest
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in a study of the effect of Pomeron cut contributions in the production
amplitude. For production processes that allow only pomreon exchange,
such a study has been performed by Migdal, Polyakov, and Ter-
Martirosyan. 4 We want to demonstrate how their field theory emerges
as an approximation of our reggeon calculus.

Conventionally, when formulating the reggeon calculus as a field
theory, all vertices are approximated by their value at vanishing external
momenta and energies. We have already said that in this approximation the

vertex N and the triple reggeon vertex r which are
Z 1£2 11;121 3

real functions acquire an additional factor i. This comes from the factors

Yy which in our approximation become -1 . From our rule (g) it is

clear that in any diagram there are just twice as many Ni P ard

Ty ge ges vertices as Y, . factors, and so there is just one Ay = +i

for each NJZ g- and Tyge  goo With the approximation of the vertex

functions VL and VR one has to be a little careful. When VR and

VL are approximated by their values at zero reggeon energy and

momentum, then formula (2.17) of I teaches us that

= =V = = 4.2
VR(o./1 az) L(ar1 az) v ( )
i isti i : F_=F
and there is no longer any d%stlnctlon between FL and FR L R
= F. With the further approximations n ~ mz(cf. (2.4)> s éj ~ EJ. ~ -1,
' 1 2
E .~ —-—E—— - i, we then obtain for the 2-+3 amplitude near
PR (i, =3,)
172 172
Iy~ iy 1
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2 o i -i -]
1 } 1 2 1 2
_- ——— 1 +
( 4i) Jd‘]id‘]zsab Sbc{n E’jigjz j1 n gjzgjijzl:‘R] (4. 3)

2 I, ]
1 T VR P S
~ (‘Zi—) deidjzsabsbc (m ) (-2F)

However, VR and VL contain, in general, also higher order terms:

VR = VR(ar1=ar2=1) + (ar1-oz2)VR(a/1=arZ=1) + ...

VL = VL(ai=oz2=1) + (az-ai)VL(a1=afz=1) + ... (4.4)
with V%=VL=V' , and when this next leading term is included, (4. 3) is
modified to:

2 I, ] .
-1 o 1 C2 2 -1 2i _,,
(:ﬂ) deid‘]zsab Sbc (m) —(-2)(F +—1r-F ) (4.5)

where F< results from V“ and is, in general, of the same order as
F . The important result of this is that in (4. 5) the coefficient of the
energy factors is a complex function: whereas F. and F_ are real

L

analytic functions near jim jZ ~ 41 and t2 ~ t2 ~ 0, the amplitude is
not pure real or imaginary. This is a consequence of the signature

factors.
Formula (4. 5) suggests to introduce a complex effective coupling
constant
- 2i .
U= 2(V+-Tr—V ) (4. 6)
for the particle-two reggeon vertex, and a factor -i for each subenergy
S and s __ . It is then not difficult to see that this prescription gives

ab be

the right structure for the 2—-4 and higher amplitudes near ji'v 1, t1 ~ 0
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instead of being a sum of all the F with their respective signature

RL...

factors, the 2—-n amplitude has now only one term:

n-1 ] J
_ (.1 . . _.\n-1 n-1, 2 -(n-1)
Ton ( 41) JdJindJn-i( Y Sab " syz (m)
. F(]i..Jn_ii ti"tn-i) (4.7)
where F is a complex valued function and proportional to Un_ . This

leads directly to the field theory of Migdal et al.

However, some of the approximations which lead to (4.7) are no
longer valid when the quantum numbers of the produced particles allow
exchange of other Regge poles. In particular, VL=VR is not justified
when two different Regge poles couple to the produced particle, and the
amplitude remains a sum over several terms with their respective

signature factors. The application of our rules to such processes looks

rather promising and we hope that our study stimulates further work on

these lines,
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APPENDIX

We first analyze the diagram of Fig. 23. The blobs contain simple
Regge poles, and Fig. 23 is then equivalent to the two reggeon diagrams
in Fig. 24. The analysis follows closely the pattern of Gribov's original

paper, and in our analysis we shall work out only those points which are

different from Gribov's discussion.

First we introduce Sudakov variables:

2 2
‘ - - m_ ¢ = - _Iri..
pi - pi s pz! p2 pZ S p1 (A'i)
=apl+B.p’ +
kj=ap; *Bpf k)
] 2
= ...b_c L _cil s +
Q"5 P TSP,
2 s
.t L Cap
9, s P1 75 P29,

The analysis of the Mandelstam crosses at both sides of the diagram is

the same as in the elastic case. It leads to the restrictions

m2 m2
< —_— s - L]
frT5 0% S (4.2)
mZ ‘ mZ
— S — .3
54 ~ s H BS s (A )
The momentum transfer along reggeon 5 is only finite if
mz
0.'5 S 5—— . (.A. 4)

be
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As a result, we may neglect these parameters in the diagram, wherever
they appear in a sum together with other parameters, which are of the

order 1. From the link between reggeon 5 and 6 we obtain:

mZ 2
agSz— » By 5o (45)
be ab
Now we consider the energy of reggeon 3:
5 .
+k_+ + + +
(kg ko +leg) © ~ s[(a3+a4>(ﬁ7 Bg) + (astarg) (B, 64)] (A6)
where we have already neglected terms of the order ~ m . (A.6) can only
be large, if either
+a | >> o+ HB_ > B_+H
case (a) azte, @ tag and 67 [38 [33 [34 (A.7a)
ta > a_+ > B+ . .
or case (b) a tag o ta, and 53+(54 B7 [38 (A. 7b)

Since s 05‘38 < rn2 and sozSB7 < rn2 from the link between reggeons

1, 3, and 5, we obtain in case (a)

@ < a/3+a/4 (A.8a)
and in a similar way also
+ . .
B, < B, 1By (A.9a)
In case (b):
< +
ag o, 018 (A. 8b)
+
B, < B3Py - (A. 9b)

From this we obtain the following decoupling scheme for the aiand ﬁi -
integrations (i=2,5,): each of these variables appears in only one vertex

(Fig. 25). The vertices are now connected only by the transverse
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components of kz’k5 .

Case (a):

Next we restrict ourselves to case (a) and look at the reggeon

energies:
reggeon 1: (1-ﬁi)a7s (A.10a)
reggeon 2: ﬁ1a3s (A.10b)
reggeon 3: (013+oz4)(5 7+f58)s (A.10c)
reggeon 4: (34068 (A.104d)
reggeon 5: -p8args (A.10e)
reggeon 6: (1-a,)B .S (A. 101
679 2
Since (A.10a) is to be large, we need g > Eng— , but a study of the
2
propagators in the vertex between reggeon 1, 3, and 5 leads to @, < Sr_n_
be
Thus:
2 mZ
Do« < (A.11)
S 7 Sbc
mZ
Equation (A. 10e) requires 58 > — but from (A.5) we have ags < S b
Therefore
2
r—n_<<p < 1 . (A.12)
S 8
ab

One further shows that the @g- integration in the vertex 1-3-5 vanishes,

ifnot [B,|>|Byl . Thus

2
2« 57 «< 1 (A.13)

Sab

All other a; and [31 in (A.10) are in the interval
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2
m
—_— < < . .
S o, ;31 1 (A.14)

Using the conditions (A.12), (A.3), (A.8b), (A. 9a), (A.12), and (A.13),

we write down the propagators for the vertex between reggeon 1, 3, 5:

2 2
k= sap, Tk | (A. 15 a)
K - + k2 A.15b

g = Saghg T kg (A.15b)
(q.+k_-k_ )2 = +(q, -k_+k_) 2 A.15
QTR=RY) = SegBa H gtk tky) ) (A.15c)
(q,-ke-k )% = sl +a)B. + (q, -k -k_) 2 (A.15d)
Ay 7%57g) = slagta)po +(q -ko-k.) .

(kotk )% = sla, + ag)(B_+B.) + (k_+k.)2 (A. 15¢)

78g) T slag T oal)(Bo By 7781 .

2 2
+k_+k - = +o_+ +8 ) + (k_+k_+k - .15
(k5 k7 k8 kz) s(a5 @ 08)(57 138) (k5 k? k8 kz)_L (A. 151)
The energy factors from (A.10), which belong to this vertex, are
Ly L o
+ -

with £ ; being the angular momentum of the i-th reggeon. From (A.15)
it follows that for the as—(or a5)—integration all singularities lie in the

same half plane, and its integration yields zero, if not sgn [37 f sgn ﬁs

and [ 67[ > ’ ﬁgl . Assuming this, all poles of o, coming from the

7
propagators (A.15), lie in one half plane, and the a7-contour can be
closed around the energy cut of reggeon 1 in the opposite half plane. As

a result of this, the absorptive part of the amplitude of reggeon 1 appears.

One further shows that the contributions due to the regions ﬁ7 >0, [38 <0

and [38 > 0,[37 < 0 cancel each other if the signature of reggeon 1 is
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different from the product of those of reggeon 3 and 5. 1If they are

equal, the contributions add up. Now we introduce the variables B§=-68/[37

rd

a/5=-ﬁ7oz5,a8 = - 7%g> X = s« Then the expressions in (A.15) do no

7ﬁ7 ’
longer depend on (37:

2

2

=x +
ko= x+ ko (A.17a)
2 ... 2 (A.17b)
kg = sagbyg T kg

2 2

(a+ko-k)" = x + (q -k, k)| (A.17¢)

“k_-k )% = s(@tta)B’ + (q. -k -k )2 A. 17d)
(q)-kg-kg) = slagted)Be + (q,-ky-ko) (4.
k_+k_ )% = x(1-B7) + sa?(1-B7) + (k_+k )2 (A.17e
(kotkg) = x(1-Bg) + sag(1-Bg 7 %81 -17e)

2 2
+ - = - ’, rd ” - P - . .

(kgththeok,)” = x(1-B2) + s(ag+ag)(1-Bg) + (e otk thy k). (A 170

and the [37 integration can be done explicitly. We obtain for this vertex:

2 y £
2 2 2 1 3.5 1
. =+ 0 —
consk S Jd k7d ksjdana7d;37da8d58a7 ([37 68). {38 ggg” 50—
k7—m
. 1 ) 1 1 1 1
2 2 2 2 2 2 2 2 2 2
- - - - - + - +k - -
(q1+k7 kz) m k8 m (k8+k5 qi) m (k7 k8) m (k5+k7 k8 k2) m
1
-£ -1 L _+2 -2 -2
1 3 561 21,2 2 s Aa .
= const. s j- 5 dﬁ7 B s Jd k7d kgjdx dozsdozSdpS
m /s
ab
£ 1 . £ 3 ,I 5
X (1—;38) 68 - ggg+ DPropagators
+ - -
L 13 £ 5 £ 1 1
4w f—
- 1—1 (Sab
= S e . (.A. 18)
JZ3+£51211 11,1315
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where Ty g g is the same function for the three-reggeon coupling, as
177375
in Gribov's original paper, being independent of the energies.

For the vertex between reggeon 2, 3,4, the analysis proceeds in

the same way, except for the fact, that s, does not appear:

b
m2
— K, <1 (A.19)
_n_l_z K o, 1 (A.20)
s 4 )
Ei < B, 1 (A.21)
s 4

These conditions are the analog of (A.11-13). The result of the analysis

4 4
(dai,d k3,d k,-integrations) is:

£ _+2 -4 -1

372 74
1
-7 - - =
411(8)
8

. (A.22)
1 -4 - Y
£3 EZ 24 ! 14’£2 3

Finally, we have to analyze the link between reggeon 5 and 6. This is

done in Ref. 10 and we quote only the result:

£ £
2 6 5 1 1
gl 5{5,1 . const-Jdagdpgd kl(ﬁgs) (ozgs) gg 72 o )2- 5
- 9~ 1dy7R5TRy) T
1
RN
15 £6 2 2
S.p Spe L ((q -k) . (q,-k) ,n) & &
ab bc !516 1 7L L 2 1615
£ ¢ -1
5.6 5 . 2, .2 )
L,
+ (g -k)2 Ry
1 VR(I 504 39 BT, (q, k)i,n)é,z £, 4 |- (A.23)
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Now we are in the position to combine all energy factors: with the

. . . 4 S . .

introduction of Sudakov variables: d ki == daidﬁidk“_ we obtain, in
s . 2 .

addition to the reggeon energies, sg; but a factor s is necessary for

each of the two N's and the r's to make them energy-independent,and

a factor s for le 7 We are then left with
+4 -4 -
56 L2 _+£ -2 -1 J83151}'11
4\ 3 2 4 1_( 1 )
4t -7 -1 1-|= -1 -
:18 2, 3S£5 ’Zsslc}.s gttt (s) . Lt Sy
- - + - -
ab “be T BT I Y B
(A.24)
Expressing s through (2.2) in terms of n, S and 1o and taking
the double Mellin transform with respect to 5.b and Spc 0 We obtain:
e 1 n'l4 1 1 1
-(L _+L _- i_ - + ~1) 3, ~(4 +L 1) § +L _+4 -4
Lytyrts-h) Jpr M) (b=t gl oy
-(L +4 _+
_n(£3£21) 1 1 1 (A.25)
i (4 _+ _+2 ,-2)7.-(f 4 4 _-2) i (L L _-n|
IprEpthgthgma) Jy -ty thgth g=2) jy =2+, -1)

Making use of the fact that Rej1 > Rel i and Rej2 > Rel ;» We can do
some of the £ i-integration and convince ourselves, that (A.25) is
equivalent to:
(L,
. . - . 1y -
n (27i) 6(32 (114161))5(31 (ziﬂzn)
: - + - - +L - . .26
5(14(112!231)) 5(!1(12131)) (A.26)
Finally, we have to take care of the signature factors. We observe that

for reggeon 1 and 4 only the absorptive part of the subamplitude enters

into the whole amplitude, and we are then left with gz , {:,1 and the
2 3
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signature factors in (A.23). For the first part of the brackets in (A.23),

we use (2.11) and combine gz with gl to iY!Z 2 &l and this with

3 5 3 5 1
£ to:
12
J2?_13£5£6>£5 11122 135 1 72 65
=iy iy £ & . (A.27)
LR PR Py

In the second part of (A. 24) we arrange the signature factors in the

following way:
iy
£ & £ &, =iy, , iy z‘*lééé (A. 28)
- z l 1 T . . . . .
1ottty Latsg 121Yz4z5323132

Instead of this, we could have combined in another way:

g, & & & =iy iy £ & .
Lot Eots L4ts 050
& & § & , =iy iy £ & . (A. 29)
Lo sty Lols 0T,

There we see explicitly the factors Yy and \ . which generate
4 5 4 6

zeros when j1 and j2 take physical values. It is also clear from

(A.29) that there are no poles from zeros of y, as it might seem from

(A.28). The form (A.27), (A.28), however, yields explicitly a y-factor

for each vertex with two leaving reggeons (N and r in our
f4te Lptsts

case), and one can see fairly easily that this ktolds for any diagram. But
in all considered diagrams we found it possible to arrange the signature
factors similarly to (A.29), i.e., without denominators of v-factors.

Returning to (A.27), (A.28), we combine them and obtain:
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-(14—1) —,25 _gé
] £ & In "V_E & +n V,LE £ (A.30)
0,71, L L L, Rzézszé
=n "§ & . iy iy V. +n & £ | iy i : V..
Jp 00 Eyt, st L J2 343, £1lzvl 35 iy, , R
5 6

Thus our final result for our diagram Fig. 24a is of the form (2. 6) with

2 2
. {dﬂ 1o.:£é,§d k2d4k5 (2m)46( (2 4t 1)) 6(;;2-_(1 e 6_1))
’ (2mi) (27)

‘6(1 -4 _+L —1)) 5(1 (L _+E -1))1\1 v N
2
4V 2" 3 1727 3 0,0, 00

2
T, Y . \%4 (!l , L ( ),(q ),n)
e (( x)%e ke | k))G k% )G k 2)
¢\t k) )G, (k)G 2 k) )Gy (kg NG, ((q -kg))
1 2 3 4 5
Y
G (( —k)z)i 46 (A.31
e N7 YT . 31)
4 5
Case (b):

The reggeon energies remain unchanged, except for reggeon 3:

(e, tag )(B 31, )s (A.32)
instead of (A.10c). Egquations (A.11), (A.12) are still valid, and the
requirement that there must be poles br 57 in both half planes demands
T a’gl > { a7l . On the other hand, we have Sb asgm from the propagator
(qi—ks-kg)z—mzz

m2 m2

— < la8'<<——— . (A.33)

Sbc
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Now we proceed in the same way as in case (a): for the vertex 1-3-5,
the energy factors are

4 L_ ¢
1 3 5
+
@, (ar7 ar8) [38 s (A. 34)

The BS—integration becomes an integral over the absorptive part of reggeon

5, and by change of variables: @l = —oz7/oz8, BS = ~agB,, B, = -a867 ,

= Sa we can do the [38—'1ntegration. The result is:

£ _-(L  +1 _-1)

5 13
o)
~(£ H -1)-1

8B8

Sab
s r . (A.35)
- +4 - ;
15(121131) 15,1113
Together with
+4 -1~
. zz 3 1-4
-4 1-(—)
S 4 > r (A. 36)
+7 -1~ ; )
£ 23 1-1 14,12 2123

for the lower three reggeon vertex we obtain for the doubleMellin transform:
1 n_u 4 1 1 1

+4 -1- =L +L - i =L +4 - j - +4 _+4 -

Earhymt-ty, Jpmhytgmt) Gyt g Jy = gt -2)

ESPRLEY, 1 1 1
-7

(L L _- T (L L _- (4 L
L e A B Ul Pl S

— 3 (A.37)
-2l -0

which is equivalent to

-(‘e 4—1)

n (2ni) s (ji-—(ll o 5-1))5(3'2-(/1 + 6—1)) §(L L, ~1-2 )6(L +

4 3 1-Lp).

3
(A. 38)

As to the signature factors, we combine E,[ and gl to {:,]Z and obtain:
1 3 5
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ty, 4 § Ssz L & &

173 66 4

_15 _£6

= 1y iy € 48 M Vo, & L, 48,V
Lybg| bttt by L Lttt -1ty R
-1 Yy g -1 (4.39)

. 5 4" 6 6
or iy iy £ £ .n V., +4—m——¢ E . n "V } (A. 40)
SRR [ PR Pe L l‘f;z415 J2 343 R

With this we again arrive at (2.6) with

2 2

a (Mt [Tk (2mi) "o 3,2, 2 -1)) FAP A

L, R % 7 e R s P34
(2mi) (2m)

'6(1 A% 3”4'“)6 (ﬂ 58, * 3'“)Nz 12"1 NIV AT IR S VIR

1 6 57173 "2°37°4

2 2
((qi'kz) _L) G, (_kZ_L)G!3((k2-k5)J.)

Yy o4
) 1, — =% (a.41)

2 2

2 2 2
"Gy 4(k51)Gz 5((q1'k5)1)Gz 6<(qz‘k5)1

Finally, we consider diagram Fig. 26. From the requirement that

the energy of the subamplitude 3

slagta, ) (B Bo) + sla tal) (B, 16 ) (A.42)

has to be large, we obtain again the two cases (A. 7a,b) together with
(A.8,9). They correspond to the reggeon diagrams in Fig. 27a, b. In
case (a), the upper three-reggeon vertex depends only on g the lower

one on [32. Determining the intervals for the o« , § parameters which

appear in the reggeon energies in the same way as for the previous
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diagram, we obtain for the upper vertex:
+g -1-

! 3 15, ‘ 1

-£ -1 s
1 ab
S r (A.43)
+f -1-0 - :
13£51£1 £1,£3£5

and for the lower one (by symmetry arguments):

£ _+L _--1-4

. 1—(_1_-) 2 73 4
-7 - s /)
s ° 12i13'-1-£4 I (A. 44)
Combining all s-factors, reexpressing s in terms of sab’sbc and n
and taking the double Mellin transform with respect to S.b’ Sper V€
obtain
(-1-)1! 2+£ 5-2 . . . .
n jg W =2) § -1 =) G ST =2) T,=(T +L~1)
(A. 45)
which is equivalent to:
, L2+ 5-2 .
(5) (2i) 6<j1—(1 L 2-1)) 5(j2—(£ L 5-1))5 (Jz RIS 5—1))
. 5(/14-(1 o+ '3-1)) . (A. 46)

The exponent of n is the sum of angular momentum, carried by the

reggeon under the produced particle (see Fig. 22), and together with
-4 -4 2
the n-factors n , N from the vertex of the produced particle the

n-factors become:
L _+2 -2 ) £ _+e 5-2

275 -j, -4 2 -j
3 (1 1 3 (1 2
. (—) =n ,n (—) =n . (A.47)



-47- FERMILAB-Pub-74/95-THY

The signature factors: § g f Iz € . are shown to be:

-t -1 Yy At
n & & . Ve o+ - £ E . VR (A.48)
5 Jp 334 Yy 3ol -t J2 4435

Yy N: ZlY,e N

and our expressions for FL R become:
?

2 2

po S E2 ks [y (i) 8 (3, - (0 +4 ,=0) 61,02 o+ -1)

s , — ™ Ig7E 27 4T g
(211.) (21T1)

szzzszr

-6(j ~(4 +L -1))6(! -0 +L -1))-N Y
: .
274 4 17375 L, Lo st e

2 2

r G, G, G, G,,G, G, -V R(l A 2,(q,~k -k ), (q,-k_ -k_) n)
.1 rd ’ 2 E) 3
24, 21311 11217.313 £4£5 L., 337" 2 5T 1tt2 2 5L

Y, .
+7 -
5.4 4 ~1

1,Y . (A. 49)
+ -
25,0 4 1

The remaining case (b) leads to the same expression.
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FIGURE CAPTIONS

The simplest diagram for the 2-3 amplitude.

A cut contribution to the 2—+3 amplitude.

Two-reggeon cut in the 2-2 amplitude,

Reggeon diagram as obtained from Fig., 2.

This diagram is obtained from Fig. 2 when the blobs
there have a more complicated internal structure.

(a) hybrid Feynman diagram

(b) reggeon diagram to (a)

(c) replacements to be made in Fig. 4 in order to reach
Fig. 5b.

Another diagram for the 2--3 amplitude.

This diagram can be obtained by ""enhancing' the left
ﬁmdelstm cross in Fig. 2 through pole exchange.

(a) hybrid Feynman diagram

(b) Corresponding reggeon diagram

(c) Replacement to be made in Fig. 4 in order to reach
Fig. 7b.

Two more complicated diagrams.

Reggeon diagrams, obtained from Fig. 8.

Three types of vertices which occur in the reggeon

calculus for the production amplitude,
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